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Stick—slip vibrations and chaos

By K. Porp aAND P. STELTER

Institute of Mechanics, University of Hannover, Appelstrasse 11,
D-3000 Hannover 1, F.R.G.
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Stick—slip vibrations are self-sustained oscillations induced by dry friction. They
occur in engineering systems as well as in our everyday life, e.g. the sound of bowed
instruments results from stick—slip vibrations of the strings. Two discrete and two
continuous models of stick—slip systems have been investigated in this paper, which
exhibit rich bifurcational and chaotic behaviour. Results from numerical simulations
and experimental observations could be obtained. In the latter case, chaos has to be
distinguished from noise in the measurements. This requires special analysis methods
like the reconstruction of a pseudo-state space from a time series and the calculation
of the so-called correlation integral.
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1. Introduction

What do squeaking doors, stringed instruments, squealing railway wheels, grating
brakes and rattling machine tools have in common ? Well, they are examples of self-
sustained oscillations due to dry friction (Magnus 1961). This type of oscillation
is often found in our everyday life as well as in engineering systems. Recent
investigations of oscillations induced by dry friction have shown that beside the well-
known limit cycle behaviour, chaotic motions are also possible, depending on the
system parameters (Popp & Stelter 1990; Stelter & Popp 1989).

The aim of our research is to investigate simple mechanical models under self-
excitation due to dry friction, to show the transition from regular to chaotic motions
and the corresponding parameter dependencies as well. Beside analytical and
numerical results, some experimental observations are also presented. In the latter
case, one has to distinguish between chaotic phenomena and noise in the
measurements, which requires appropriate analysis methods.

Dry friction appears in two different phenomena in nature: (i) as a resistance
against the beginning of a motion starting from equilibrium (stick mode); (ii) as a
resistance against an existing motion (slip mode).

The friction resistance is a constraining force in the stick mode and an applied force
in the slip mode. In an oscillatory motion both phenomena take place successively,
resulting in a stick—slip mode. Since the friction characteristic consists of two
qualitatively different parts with a non-smooth transition, the resulting motion also
shows a non-smooth behaviour. Thus, stick—slip systems belong to the class of non-
smooth systems, where discontinuities occur on a surface in the state space (Utkin
1978). Other examples are systems with stops, impacts, hysteresis or active systems
with a discontinuous control. Furthermore, in stick—slip systems some degrees of
freedom are blocked during the stick mode; thus, they also belong to the class of
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ENERGY
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Figure 1. Block diagram of a self-sustained vibration system.

non-smooth systems with a variable structure, where the number of state variables
changes with time. Further examples are systems with play or rest, e.g. snap-in
mechanisms.

It is well known that non-smooth systems can exhibit chaotic behaviour.
Engineering problems of this type where chaos was found numerically and/or
experimentally are the following: a hinged bar with periodic impulsive loading (cf.
Hsu 1987), a moored vessel bouncing against a stiff fender (cf. Thompson & Stewart
1986), impact print hammers in a matrix printer (Hendriks 1983), a vibrating beam
with an amplitude constraining stop (Moon & Shaw 1983), a rotor touching a
boundary (Szczygielski 1986), lateral motion of a railway bogie (Kaas-Petersen &
True 1985), rattling gear drives (Pfeiffer 1988), a constrained pipe conveying fluid
(Paidoussis & Moon 1988). Unfortunately, these systems cannot be analysed by
methods that require certain smoothness assumptions on the nonlinear functions
involved. For example, the common methods for calculating Lyapunov exponents
cannot be applied. Therefore, new ways of investigation have to be found.

There exists a rich literature on chaos in self-excited systems with smooth
nonlinearities (Guckenheimer & Holmes 1983 ; Abraham & Shaw 1983-88; Kunick &
Steeb 1986; Thompson & Stewart 1986; Neimark & Landa 1987). However, in case
of self-excitation due to dry friction only a few hints for chaotical behaviour can be
found (Popp et al. 1985; Grabec 1988; Fingberg 1989).

2. The violin as an example

To become acquainted with friction-induced self-sustained oscillations, the
vibration of a violin string will be considered. Each self-excited vibration system
encounters an energy source, an oscillator, and a switching mechanism triggered by
the oscillator, which controls the energy flow from the source to the vibrating
systems (cf. figure 1). If the energy flow into the vibration system is greater (less)
than the dissipation during one period, then the vibration amplitude will increase
(decrease). If the energy input and output is balanced during each period, then an
isolated periodic motion can be observed, which is known to be a limit cycle.
Obviously, for a violin the energy source is represented by the motion of the bow and
the oscillator is given by the string. Figure 2 shows a simple model of a continuous
violin string and an even simpler discrete spring-mass-model which is excited by a
continuous belt instead of a bow. But how is the energy transferred from the bow to
the string and what is the switching mechanism ? Here, the dry friction between bow
and string comes into play (this is why the bow is treated with colophony). From
Coulomb’s friction laws, the difference between the static friction coefficient u, and
the kinetic friction coefficient g is well known, where g, > p holds. However, many

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 2. Simple models for a violin string: (@) continuous string, (b) massless string with a
concentrated mass, (c) discrete spring-mass system driven by a continuous belt, (d) phase-plane
plot.

0.5~ I 11
(a) ™ (6)
0.4r‘- -
T o3l \
L 02 | .
0.1
[T N 1 |
o 1 2 3 4 5 ot 5%
lvr)

Figure 3. Friction characteristics with the corresponding phase-plane plots for the discrete
violin string model (figure 2c¢). (a) u(v,) =p, for v, =0, uw,)=p for v, #0. (b) u,)=
(o—p)/ (A + A )+ p,+avk. (€) uy=04, £=023. (d) p,=04, =01, A=994sm™,
a=0.7s*m™2

experimental investigations proved the dependence of the kinetic friction coefficient
4 on the relative velocity v, of the rubbing surfaces, u = u(v,), where a decreasing
characteristic for small values v, was observed (Conti 1875; Galton 1878; Franke.
1882; Bochet 1961). Figure 3 shows two different friction models I and IT depending
on two and four parameters, respectively. The corresponding stick—slip motion for
the spring-mass model is visualized in the phase plane, where velocity # against
displacement x of the mass is plotted. The qualitative behaviour is equal for both
friction models. Although the motion of a real violin string is more complicated, the

Phil. Trans. R. Soc. Lond. A (1990)
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energy transfer from the bow to the string can be explained by means of the discrete
model of a spring-restrained block on a continuous belt; see figure 2 (cf. Bishop 1965).
If the belt is moving, then the block will start to oscillate. This motion takes place,
because the friction between the block and the belt is greater for small slipping
velocities than for large ones. By starting from standstill, the velocity of the belt will
be always greater than the fluctuating velocity of the block so that the direction of
sliding is always equal. Hence, the friction force exerted upon the block has always
the same direction which coincides with the direction of the belt motion. But while
the block moves in the direction of the belt, the velocity of slip is smaller and the
friction force is larger than by moving in the opposite direction. Thus a surplus of
energy is transferred to the block during one cycle of motion which leads to
increasing amplitudes of displacement and velocity of the block. When the block
velocity reaches the band velocity, the block sticks to the band and moves with it
until the restoring spring force becomes larger than the static friction force acting
upon the block. Now, the limit cycle is reached, where stick—slip motions appear.
The equation of motion for the discrete model depend on the relative velocity
v, = & —v, between block and band. For the slip mode, », # 0, the following equation
is given:
mi+F, = Fg(v,), F,=cx. (1)

The friction force Fy(v,) is an applied force,
FR(Ur) = —/I’(Ur)FN sgn (vr)7 (2)

_depending on the friction characteristic u(v,).
For the stick mode with », = 0 it follows:

E=v, &=0, Fgv,=0)=F,=cx. (3)

The friction force Fy(v, = 0) is a reaction force which is constrained by the static
friction law,

[Fr(v, = 0)| < o By,  po = p(v, = 0). (4)

Here, Fy denotes the normal force, Fy > 0, and F the restoring spring force.

The main features of the stick—slip motion are the same for both friction laws,
as it can be seen from figure 3. Thus, Coulomb’s simple 2-parameter friction model
with u, # p, p = p(v,) = const., will be chosen to construct the phase-plane plots, cf.
figure 4:

For v, < 0 from (1), (2) it follows

Ft+wie = uFy/m, oi=c/m. (5)
The corresponding solution reads

x(t) = uly/c+C cos (wy t— ), (6)
where C' and ¢ can be determined from the initial conditions. This solution can be

characterized by circles about (+puFy/c,0) in the x,&/w,-phase plane. Similarly,
v, > 0 yields circles about (—ukFy/c,0) in the phase plane, where ukFy/c =z, is

Phil. Trans. R. Soc. Lond. A (1990)
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Vo
w,
| K}s\ w
Figure 4. Phase-plane plots for the discrete violin string model with a simplified
friction characteristic, cf. figure 3a. x, = u,Fy/c, x, = uFy/c.

.

the equilibrium position, cf. (1), (2). On the other hand, from (3), (4) the limit points
x,, &g for the stick mode can be calculated,

|l < poFy/c = x,, (7)
To=—Tg KT K +2Xy = X, (8)

The advantage of this simplified model is, that the phase portrait can easily be
established, see figure 4. Due to the simplified friction model where the decreasing
characteristic is replaced by a discontinuity, the limit curve A-B-A is not the only
periodic solution and is also not smooth in A in contrast to the limit cycles for
continuous friction models, cf. figure 3. However, this simple model allows two
limit cases to be deduced, where either the stick mode or the slip mode dominates
during one period of the limit cycle. This is also important in the case of a violin
(cf. Cremer 1981). The distance 4, 4 = xy—x, = (4, —p) Fx/c¢, is proportional to the
difference between the maximum static and kinetic friction force. If 4 < v,/w, or
1/tanp < 1, cf. figure 4, then the friction force will be small compared with the
restoring and inertia forces. In this case the slip mode is dominant and a nearly
harmonic motion results, where the frequency is close to the natural frequency
F.f = fy = wy/2n, of the free oscillator and the corresponding periodis 7' & T, = 21/ w,,.
On the other hand, if 4 > v,/w, or tang < 1, then the stick mode will be dominant
and the friction and restoring forces govern the motion, while the inertia forces are
negligible. In this case, a sawtooth-like relaxation motion comes up, where the period
is approximately 7'~ 24 /v, and the corresponding frequency is f = v,/24. In the
frequency spectrum of this motion, many higher harmonics appear. The motion for
the two limit cases is visualized in figure 5. Therefore, the sound of a violin string
will be quite different for these two limit cases.

However, the oscillations of a real violin string are much more complicated than
the vibrations of the discrete spring-mass model. First of all, the violin string is a
continuous oscillator, where wave propagation takes place. This has experimentally
been investigated by Helmholtz with a ‘vibration-microscope’ (¢f. Helmholtz 1913).
Furthermore, the torsional motion of the string as well as its bending stiffness are of

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 5. Limit cases of the violin motion: (@) harmonic motion for 4 < v,/w,,
(b) relaxation motion for 4 > vy/w,.

importance (Cremer 1981). A sophisticated model for computer simulations has been
developed by McIntyre & Woodhouse (1979). But, to evaluate the sound of a violin,
the strings together with the sound box and the connecting parts have to be
investigated. One motivation for doing this is to explain the sound quality of the
violins made by the famous old Italian masters and, perhaps, to lift the secret of their
craftsmanship (cf. Skalmierski 1981). But this is not the aim of the present paper. On
the other hand, an interesting question is, Can a violin string oscillate in a chaotic
manner ? Or in other words, can a violin sound chaotically ? Intuitively, to the
last question an affirmative answer will be given, due to audible experiences with
beginners playing the violin, cf. figure 6. However, up to now, there are no systematic
investigations on chaotic oscillations of a violin string. The discrete model described
by equations (1) to (4) is not complex enough to exhibit chaotic motions. But other
discrete and continuous models will be shown, where rich bifurcational and chaotic
phenomena occur.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 6. Measurement of the violin sound: (a) test set-up with violin 1 and microphone 2 in an
insulated room, preamplifier 3, signal amplifier 4, Frr-analyser 5, plotter 6 with frequency plots of
the measured sound pressure for (b) normal tone d, (¢) ‘chaotic’ tone d played with large bow speed
and large bow pressure.

3. Some discrete and continuous models of stick-slip system

In all systems under consideration, self-excitation is induced by the friction force
of a continuous belt acting on the structure. Two discrete and two continuous models
have been investigated as shown in figure 7.

The two discrete systems have been investigated numerically only. They serve as
simple model problems to show different phenomena, parameter dependencies and
routes to chaos. The two continuous systems have been investigated experimentally :
(i) to get evidence of chaotic behaviour, (ii) to develop analysis techniques which are
applicable in the presence of noise, and (iii) to gain data for comparisons with
numerical results. Important questions which should be answered by means of
experiments are: How to develop simple models for continuous systems being able to
describe chaos? How to separate noise in the measurements from deterministic
chaos ?

For the numerical analysis of the discrete models, the friction characteristic (LI),
cf. figure 3, has been assumed with the parameters g, = 0.4, 4, =0.1,A =1.42sm™,
a = 0.01 s> m™2, if not specified otherwise.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 7. Discrete and continuous models of systems which show friction induced self-sustained
oscillations: (a) single-degree-of-freedom oscillator with an external harmonic excitation, (b) a
two-degree-of-freedom spring-mass-damper-system, (c) a cantilever beam as a one-dimensional
continuous system, (d) a thin centrally fixed plate as a two-dimensional continuous system.

Model A represents a simultaneous self- and external excited vibration system.
The equations of motion read in non-dimensional state space notation:

Ty = Ty,
&y = =, + [P (— ) — Fy(v,)]/c+ 1y c08 (), ®
Xy =1,

with the abbreviations

(*) =d®)/dr, 1=wt, wy=+/(e/m), 1=8[w,|

Zy =XT—&g, V=0TV, Ty = pu(vy) Fy/c, J

(10)

[
]|

where m means mass, ¢ spring stiffness, v, belt velocity, u, excitation amplitude
and Q excitation frequency. The parameter values and initial conditions are, if
not specified otherwise: v, = 1.0 m s™, Fy/c = 10.0 m, u, = 0.5 m, w, = 1.0 rad s,
7 = 2.1, and z,(0) = 0, 2,(0) = 1.0 m s7*, respectively.

Similarly, for model B, which represents a two-degree-of-freeéom self-sustained
vibration system, we have:

Ty = Xy,
xy =y {—(1+k) 2, —2D(1 + ) @y + x5+ 2D, + [Fr(—v,) — Fr(vpy)]/Co}, (11)
Ty = 2,
¥y = @+ 2Dx, — 23— 2Dy + [F(—vo) — Fg(vy5)]/ o,
with (¥ =d(*)/dr, T=w,t, w, =/ (cy/Mm,),
Y =my/my, K =c/c,, J=d;/d,, (12)

D =dy/2v/(cymy), ¥y = 03— 1, Vpy = 032, — 0y,

The meaning of the parameters becomes clear from figure 76. Here, the parameter
values and initial conditions are, if not specified otherwise: v, =1 m s™, Fy,/c, =
Fyo/cs =20.0m, w,=10rads™, and x,;(0) = x,(0) =0, 2,(0) =2,(0) =1.0ms™!,
respectively.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 8. Bifurcation diagram for model A depending on the frequency ratio # with an enlargement
and phase-plane plots for (a) # = 1.22, (b) 7 = 1.26 and (c) » = 1.30, by Jahnke in 1987.

® T

Figure 9. Chaotic motion for model A in the three-dimensional phase space with
Poincaré sections, (@) #7 = 31 and (b) 97 = i, by Jahnke in 1987.

As an alternative to the state space description the mapping approach will be
mentioned. For the system model A and the friction model I, the equations (1)—(4)
hold, when the disturbance, u(t) = u,cos ¢, is regarded in the spring force F, i.e.
F, = c(x—u,cos 2t). For the slip mode with v, < 0 the solution reads in contrast to
equation (6),

x(t) = g+ C cos (wyt — @) + Vu, cos ¢, (13)

xg=ply/c, V=1/1—9%), 9*=Q%/w;, wi=c/m. (14)

For the stick mode, it follows from (3), (4), using the modified spring force
(p S & S @y =@ < @p): | —ug cos Rt < poFy/c = x,, (15)
Xy = () = xy+u,cost,, (16)

Ty —2xp = vo(ly —tp). (17)

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 10. For description see opposite.
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Stick—slip vibrations and chaos 99

The disturbance u(t) affects the slip mode as well as the stick mode, cf. (13), (16).
But, for u, < x, —x,, u, < vy/w,, the influence on the slip mode may be neglected,

resulting in the approximation, cf. figure 4,
Tp—xg = —(Xy— %), wolg—1ly) =T+2p, tang =v,/wy(x,—x). (18)
Considering successive cycles, equations (16) to (18) yield after eliminating x and ¢y,
Xy +X; =7, —1,—n—2p,, tang;=1/X ,1

19
X,y = Xo+ Uycosyry,,y, J (19)

where the following abbreviations were used,
X = (xy—a) 00/vy, Ko = (=) wo/vg, Uy =ugw,y/vy, T=wyt,. (20)

In the limit cases tang <1 and 1/tanp < 1, further simplifications are possible.
From (19) it can be seen, that the equations are invariant if the term %7 is replaced
by y7+2kn, where k = +1, +2,...,and that the solution is bounded by

X,—U, < X< X,+U,. (21)

Both properties are useful for finding solutions (cf. Guckenheimer & Holmes 1983),
which will not be pursued here.

4. Numerical results of the discrete models

Both discrete models A and B are of order three and four, respectively. Thus they
are sufficiently complex to exhibit chaotic behaviour, which will be shown by
numerical simulations. The simulation results have been visualized by means of time
histories, phase-plane plots, Poincaré-maps and frequency spectra, while bifurcation
diagrams show the parameter dependencies. Because of lack of space only some
results will be shown in this paper.

The results for model A are given in figures 8, and 9. Figure 8 shows the bifurcation
diagram depending on the frequency ratio 5 together with some selected phase-plane
plots. Chaos occurs in certain frequency bands which are separated by bands with
p-periodic solutions of order p = 1 up to 6. Figure 9 shows the chaotic solution for
n = 2.1625 in the three-dimensional state space as well as two Poincaré sections
(x; = jm and @, = 3m) which exhibit a Cantor-set-like structure. Obviously, the stick
mode captures the periodic motions as well as the chaotic ones. Thus, in the present
case, all phase-plane plots are bounded by a line " = v,/w, = const. Further, figure 10
shows that the transition into chaos in the frequency range 0.9 < 5 < 0.96 is similar
to the intermittency route described by Pomeau & Manneville (1980). Here, the
asterisks characterize the transition from the stick to the slip mode. With an
increasing frequency ratio 5 the transition point moves to the lower bound, cf. (21).
When the bound is reached, bursts occur in the displacement amplitudes and a
chaotic motion is starting.

The results for model B are presented in figures 11, 12 and 13. Figure 11 shows the
bifurcation diagram for both masses depending on the damping ratio D (kx = 2.0,
v = 2.5, 6 = 1.0). The transition to chaos occurs for 0.07 > D = 0.04.

Figure 10. Route to chaos for model A in the frequency range 0,90 < % < 0,96: (a) time history of
displacement, (b) phase-plane plot, (c) time history of the excitation with points of transition from
stick to slip mode, (d) frequency spectra, by Jahnke in 1987.
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Figure 11. Bifurcation diagrams for model B depending on the damping ratio D,
by Wasmann in 1988.
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Figure 12. Route to chaos for model B in the damping range 0.060 > D > 0.040:
(@) frequency spectra, (b) phase-plane plots, by Wasmann in 1988.

The corresponding phase-plane plots and frequency spectra for mass 1 reveal, see
figure 12, that with decreasing damping the number p of p-periodic solutions
increase in the manner p = 1,2,4. However, for D = 0.05 this sequence is interrupted
by a p = 9 solution. In contrast to model A, chaos is approached similar to the well-
known period-doubling route. For high damping, D > 0.07, only p =1 solutions
occur. Beyond critical damping D = 1, only mass 2 performs stick—slip vibrations,
while mass 1 remains in a pure slip mode, cf. figure 13.

5. Experimental results of the continuous models

In case of the cantilever beam C, and for the thin plate D, the deflection z(¢) has
been measured by means of a laser interferometer near the band contact, cf. figure
14. The signals have been processed to gain time histories, phase-plane plots,

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Stick—slip vibrations and chaos 101

) 8

P

)

Py
J

~
2‘ D=12 D=08
> 'S Figure 13. Suppression of the stick mode of mass 1 in model B with
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— Figure 14. Test set-up for measuring regular and chaotic motions for

< - model C and D using a laser interferometer.

>

O H

I~ - frequency spectra, the autocorrelation function, a pseudo-state space, correlation
L 5 integrals and the correlation dimension. According to Packard et al. (1980), from a
TO single time series of a state variable z(¢) a pseudo-state space,

Hw 20 = [2(ty) 2(te+ 1) .. . 2(t, + £T)], k= 1(1)m—1, (22)

can be reconstructed, where m denotes the embedding dimension and T the time
delay. Then, following Grassberger & Procaccia (1983), the correlation integral,
C(r) ~ r*, can be found. Here, r denotes the radius of a hypersphere in the pseudo-state
space and v the correlation exponent which depends on the embedding dimension m.
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Figure 15. For description see opposite.
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For sufficient large values of m and a decreasing radius r, the correlation exponent
tends to the correlation dimension D, for a regular or chaotic attractor, while
C(r) ~r™ holds for a pure random noise signal. For a noise signal on top of a
deterministic signal, the plot log C(r) against log r has two regions. If the noise level
is greater than r, then the slope will increase with m, C(r) ~ #™, and if the noise
level is less than r, the slope will be constant, C(r) ~ rPe. Therefore, it is possible to
distinguish between chaotic and stochastic behaviour of measured signals. On the
other hand, the correlation dimension D, gives a hint to the state space dimension
required to model a system which exhibits chaotic behaviour. Figure 15 shows the
measured data, the reconstructed time series, the corresponding autocorrelation
function and the correlation integral for the cantilever beam, model C. To get linear
independent state vectors, the time delay T is taken as the time for the first zero of
the corresponding autocorrelation function. Figure 15 R includes the results for a
regular motion, and figure 15 C those for a chaotic motion. A comparison of the
correlation integrals shows, that in the chaotic case the slope in the log (' against
logr diagram deviates considerably from a straight line. This may indicate the
special structure of a chaotic attractor for stick—slip motions, cf. figure 9. However,
this phenomenon deserves further investigations.

6. Concluding remarks

Stick—slip vibrations are friction induced self-sustained oscillations. They occur in
many engineering systems but also in bowed music instruments. For a violin as an
example the excitation mechanism has been explained by means of a simple model
of order two. Since realistic models for engineering systems or even for bowed
instruments are very complicated, four model problems have been studied. Here,
chaotic motions have been found numerically and experimentally. Numerical
simulations for two discrete models of order three and four, respectively, resulted in
p-periodic solutions of nearly any period up to p =9 as well as in chaotic motions.
In the case of a single-degree-of-freedom oscillator with an external harmonic
excitation, the routes to chaos are similar to intermittency and all motions showed
stick and slip modes. In the case of the two-degree-of-freedom spring-mass-damper-
system, the routes into chaos have been found similar to the period-doubling. Here,
for certain parameters one mass showed stick—slip motion, while the other remained
in a pure slip mode. Experiments performed with a cantilever beam and a thin plate
showed also regular or chaotic behaviour, depending on the system parameters. In
both cases the friction forces were applied by means of a continuous belt acting on
the structure. For the cantilever beam, a pseudo-state space was reconstructed from
a time series measured by means of a laser interferometer, utilizing the time delay
method. From the behaviour of the correlation integral, the correlation dimension
has been obtained for regular and chaotic motions. This scalar quantity describes the
dimension of the attractor and, thus, gives information about the order of the system
required in an adequate model.

Figure 15. Experimental results for model C (cantilever beam): regular behaviour (R), chaotic
behaviour (C), (@) measured phase-plane plots, (b) frequency spectra, (¢) autocorrelation functions,
(d) relation of the first two variables in the pseudo-state space, (e) correlation integrals C(r). (e) (i)
Fy=35N,9y=14cems, D, =15 m=3; (ii) Fy =8 N, v, =143 ems™, D, = 1.9, m = 4.
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